Shannon Multiresolution Analysis on the Heisenberg Group *
نویسنده
چکیده
We present a notion of frame multiresolution analysis on the Heisenberg group, abbreviated by FMRA, and study its properties. Using the irreducible representations of this group, we shall define a sinc-type function which is our starting point for obtaining the scaling function. Further, we shall give a concrete example of a wavelet FMRA on the Heisenberg group which is analogous to the Shannon MRA on R.
منابع مشابه
Sampling theorems for the Heisenberg group
In the first part of the paper a general notion of sampling expansions for locally compact groups is introduced, and its close relationship to the discretisation problem for generalised wavelet transforms is established. In the second part, attention is focussed on the simply connected nilpotent Heisenberg group H. We derive criteria for the existence of discretisations and sampling expansions ...
متن کاملB-FOCAL CURVES OF BIHARMONIC B-GENERAL HELICES IN Heis
In this paper, we study B-focal curves of biharmonic B -general helices according to Bishop frame in the Heisenberg group Heis Finally, we characterize the B-focal curves of biharmonic B- general helices in terms of Bishop frame in the Heisenberg group Heis
متن کاملTranslation invariant surfaces in the 3-dimensional Heisenberg group
In this paper, we study translation invariant surfaces in the 3-dimensional Heisenberg group $rm Nil_3$. In particular, we completely classify translation invariant surfaces in $rm Nil_3$ whose position vector $x$ satisfies the equation $Delta x = Ax$, where $Delta$ is the Laplacian operator of the surface and $A$ is a $3 times 3$-real matrix.
متن کامل